skip to main content


Search for: All records

Creators/Authors contains: "Chen, L. Q."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The control of the in-plane domain evolution in ferroelectric thin films is not only critical to understanding ferroelectric phenomena but also to enabling functional device fabrication. However, in-plane polarized ferroelectric thin films typically exhibit complicated multi-domain states, not desirable for optoelectronic device performance. Here we report a strategy combining interfacial symmetry engineering and anisotropic strain to design single-domain, in-plane polarized ferroelectric BaTiO 3 thin films. Theoretical calculations predict the key role of the BaTiO 3 /PrScO 3 $${({{{{{\boldsymbol{110}}}}}})}_{{{{{{\bf{O}}}}}}}$$ ( 110 ) O substrate interfacial environment, where anisotropic strain, monoclinic distortions, and interfacial electrostatic potential stabilize a single-variant spontaneous polarization. A combination of scanning transmission electron microscopy, piezoresponse force microscopy, ferroelectric hysteresis loop measurements, and second harmonic generation measurements directly reveals the stabilization of the in-plane quasi-single-domain polarization state. This work offers design principles for engineering in-plane domains of ferroelectric oxide thin films, which is a prerequisite for high performance optoelectronic devices. 
    more » « less
  2. null (Ed.)
    Abstract Magnetostrictive materials transduce magnetic and mechanical energies and when combined with piezoelectric elements, evoke magnetoelectric transduction for high-sensitivity magnetic field sensors and energy-efficient beyond-CMOS technologies. The dearth of ductile, rare-earth-free materials with high magnetostrictive coefficients motivates the discovery of superior materials. Fe 1− x Ga x alloys are amongst the highest performing rare-earth-free magnetostrictive materials; however, magnetostriction becomes sharply suppressed beyond x  = 19% due to the formation of a parasitic ordered intermetallic phase. Here, we harness epitaxy to extend the stability of the BCC Fe 1− x Ga x alloy to gallium compositions as high as x  = 30% and in so doing dramatically boost the magnetostriction by as much as 10x relative to the bulk and 2x larger than canonical rare-earth based magnetostrictors. A Fe 1− x Ga x − [Pb(Mg 1/3 Nb 2/3 )O 3 ] 0.7 −[PbTiO 3 ] 0.3 (PMN-PT) composite magnetoelectric shows robust 90° electrical switching of magnetic anisotropy and a converse magnetoelectric coefficient of 2.0 × 10 −5  s m −1 . When optimally scaled, this high coefficient implies stable switching at ~80 aJ per bit. 
    more » « less
  3. Strain-sensitive Ba x Sr 1− x TiO 3 perovskite systems are widely used because of their superior nonlinear dielectric behaviors. In this research, new heterostructures including paraelectric Ba 0.5 Sr 0.5 TiO 3 (BSTO) and ferroelectric BaTiO 3 (BTO) materials were epitaxially fabricated on flexible muscovite substrate. Through simple bending, the application of mechanical force can regulate the dielectric constant of BSTO from −77 to 36% and the channel current of BTO-based ferroelectric field effect transistor by two orders. The detailed mechanism was studied through the exploration of phase transition and determination of band structure. In addition, the phase-field simulations were implemented to provide theoretical support. This research opens a new avenue for mechanically controllable components based on high-quality oxide heteroepitaxy. 
    more » « less
  4. null (Ed.)